Langsung ke konten utama

Postingan

UAS PRAKTIKUM GEOMETRI ANALITIK

Postingan terbaru

VIDIO DAN ANALISIS HIPERBOLA DAN HYPERBOLOID

A.HIPERBOLA Parabola adalah tempat kedudukan titik-titik yang jaraknya terhadap titik tertentu dan garis tertentu selalu sama. (karena e = 1) Titik tersebut dinamakan fokus (F), dan garis tersebut dinamakan direktrik (d). Terdapat dua macam bentuk parabola, yakni 1. Parabola horizontal 2. Parabola vertikal. Secara lebih rinci, akan dijelaskan menjadi 4 bagian sebagai berikut. (Rangkuman rumus ada dipaling bawah) 1. Parabola Horizontal dengan Puncak O(0, 0) Parabola ini mempunyai bentuk Umum: y 2  = 4px, dimana Koordinat titik fokusnya di F(p, 0) persamaan direktrisnya x = –p Sumbu simetrisya adalah sumbu-x Panjang latus rectum LR = 4p Dengan catatan: Jika p > 0 maka kurva membuka ke kanan Jika p < 0 kurva membuka ke kiri 2. Parabola Vertikal dengan Puncak O(0, 0) Parabola ini mempunyai bentuk Umum: x 2  = 4py dimana Koordinat titik fokusnya di F(0, p) Persamaan direktrisnya y = –p Sumbu simetrisya adalah sumbu-y Panjang latus rect

HIPERBOLA

Hiperbola adalah himpunan titiktitik pada suatu bidang dimana selisih jarah titik terhadap dua titik fokusnya (F1 dan F2) konstan. a.     Hiperbola Memiliki focus (±c, 0) dimana c2 = a2 + b2, titik puncak (±a, 0), dan asimtot y = ± (b/a)x b.     Hiperbola Memiliki focus (0, ±c) dimana c2 = a2 + b2, titik puncak (0, ±a), dan asimtot y = ± (a/b)x c.      Hiperbola berpusat dititik ( α, β ) d. Aplikasi Hiperbola Hiperbola sering muncul sebagai grafik dari persamaan-persamaan kimia, fisika, biologi dan ekonomi (hokum Boyle, Hukum Ohm, kurva permintaan dan penawaran). Sebuah aplikasi khusus dari hiperbola yaitu system navigasi pada Perang Dunia I dan II. e. Garis Singgung Garis singgung di suatu titik hiperbola membagi 2 sudut sama besar di titik A terhadap titik F1 dan F2. Persamaan garis singgung hiperbola adalah