Langsung ke konten utama

Bentuk Umum Irisan Kerucut sebagai Kurva Berderajat Dua


Jika diberikan sebuah kerucut kemudian kerucut tersebut dipotong dengan berbagai cara maka akan diperoleh sebuah bidang perpotongan. Gambar berikut menunjukkan berbagai bentuk irisan yang diperoleh dari hasil perpotongan sebuah kerucut dengan sebuah bidang. Hasil irisan pada kerucut tersebut akan membentuk sebuah kurva yang secara umum disebut irisan kerucut (conic section). Bentuk-bentuk irisan keruct seperti yang ditunjukkan pada gambar (a) berupa sebuah lingkaran, gambar (b) adalah elips, gambar (c) membentuk parabola, dan gambar (d) menghasilkan hiperbola.
Gambar 1. Contoh kurva hasil dari irisan sebuah kerucut

Namun para ahli matematika telah menyepakati bahwa secara umum bentuk irisan kerucut adalah parabola, elips, dan hiperbola. Sedangkan lingkaran merupakan kasus khusus dari elips. Masing-masing kurva tersebut memiliki persamaan kurva berderajat dua yang unik.
Hasil irisan kerucut tersebut memperlihatkan bahwa kedudukan titik-titik akan bergerak dengan rasio jarak tertentu dari sebuah titik tetap dan garis tetap sehingga terbentuk irisan kerucut. Tiap irisan kerucut memiliki komponen-komponen yang menjadi karakteristik dari tiap bentuk kurva yaitu esentrisitas (eccentricity), garis direktriks (directrix), dan titik fokus. Misalkan sebuah titik P bergerak terhadap sebuah garis tetap l, dan sebuah titik tetap F. Jarak P ke F dinyatakan oleh d dan jarak P ke l dinyatakan oleh d¢. Perbandingan jarak d dan d¢ disebut esentristitas yaitu e = d : d¢. Garis l disebut garis direktriks dan titik F disebut titik fokus. Nilai esentrisitas akan menentukan jenis irisan kerucut dengan nilai e meliputi e < 1, e = 1, dan e > 1.
Sebuah kurva bidang (plane curve) merupakan himpunan titik-titik yang akan dapat dinyatakan dalam persamaan kurva. Sebuah persamaan kurva berderajat dua dinyatakan oleh persamaan berikut :
Ax2 + By2 + Cxy + Dx + Ey + F = 0
dengan nilai koefisien A, B, dan C ketiganya tidak bersamaan bernilai nol.
Semua persamaan berderajat dua seperti di atas, pada sistem koordinat persegi panjang akan merepresentasikan sebuah kurva yang dinamakan irisan kerucut (conic). Bentuk persamaan kurva berderajat dua juga dapat dinyatakan sebagai berikut :
ax2 + by2 + 2hxy + 2gx + 2fy + c = 0
dengan nilai koefisien a, b, dan h ketiganya tidak bersamaan bernilai nol.
Jika kurva berderajat dua melalui titik (0, 0) maka diperoleh persamaan kurva yaitu :
Ax2 + By2 + Dx + Ey + F = 0
dengan nilai koefisien A dan B keduanya tidak bersamaan bernilai nol
atau
ax2 + by2 + 2gx + 2fy + c = 0
dengan nilai koefisien a dan b keduanya tidak bersamaan bernilai nol.

Komentar

Postingan populer dari blog ini

Contoh Soal Persamaan Bola

1.        Tentukan persamaan bola dengan pusat M(-2, 3, 1) dan jari-jari=2 ! Jawab : Dik :  Pusat     = M(-2, 3, 1) jari-jari = 2 Dit ; Persamaan Bola ? Penyelesaian :       (x – a)² + (y – b)² + (z – c)² = R²         (x – (-2))² + (y – 3)² + (z – 1)² = 4         (x + 2)² + (y – 3)² + (z – 1)² = 4        (  X 2  +  4x + 4) +  (y² – 6y + 9) +  (z² – 2z + 1)  = 4        X 2  +  4x + 4 +  y² – 6y + 9 +  z² – 2z + 1  = 4        X 2  +  4x + 4 +  y² – 6y + 9 +  z² – 2z + 1  -  4 = 0        X 2   +  y² +  z²  +  4x – 6y  – 2z + 4+ 9+ 1  -  4 = 0         X 2   +  y² +  z²  +  4x – 6y  – 2z + 10 = 0 Jadi, persamaan bola yang berpusat pada titik M(-2,3,1) adalah dan jari-jari 2 adalah         X 2   +  y² +  z²  +  4x – 6y  – 2z + 10 = 0 2.        Tentukan Titik Pusat dan jari-jari bola yang persamaannya adalah X 2   +  y² +  z²  +  8x – 10y  – 6z + 10 = 0 Jawab : Dik : X 2   +  y² +  z²  +  8x – 10y  – 6z + 10 = 0 Penyelesaia

Irisan Kerucut (Elips)

Sebuah kerucut yang diiris dari beberapa sudut dapat menghasilkan bentuk lingkaran, elips, hiperbola, dan parabola. Kerucut yang diiris mendatar akan membentuk lingkarab. Sedangkan kerucut yang diiris dengan kemiringan sudut tertentu akan membentuk bangun elips. Selanjutnya, irisan kerucut elips akan menjadi topik pembahasan tersendiri pada materi irisan kerucut. Ulasan materi yang berada pada pembahasan elips meliputi bentuk umum persamaan elips. Selain itu, pembahasan juga meliputi komponen – komponen elips yang terdiri atas puncak elips, loctus rectum, sumbu mayor, sumbu minor, dan lain sebagainya. Persamaan elips dipengaruhi pusat elips, sumbu mayor elips, dan sumbu minor elips. Persamaan elips dengan pusat O(0, 0) tentu akan memliki bentuk persamaan yang berbeda dengan elips pada pusat P(a, b). Melalui halaman ini, sobat idschool akan mempelajari lebih jauh lagi tentang peresamaan elips ini. Pada bagian akhir akan diulas cara menentukan persamaan elips dari sebuah gambar el

Persamaan Lingkaran

Terdapat berbagai macam persamaan lingkaran, yaitu  persamaan  yang dibentuk dari titik pusat dan jari-jari serta suatu persamaan yang bisa dicari titik pusat dan jari – jarinya. Persamaan umum lingkaran Dalam Persamaan lingkaran, terdapat persamaan umum, seperti dibawah ini : Adalah bentuk umum rumus persamaannya. Dilihat dari persamaan diatas, dapat ditentukan titik pusat serta jari – jari lingkaran nya, adalah : Titik pusat lingkaran adalah : Dan untuk jari-jari lingkaran adalah : Persamaan lingkaran pada pusat P (a,b) dan jari-jari r Dari sebuah lingkaran jika diketahui titik pusat dan jari-jari nya, akan didapatkan yaitu dengan rumus : Jika diketahui titik pusat suatu lingkaran dan jari – jari lingkaran dimana (a,b) adalah titik pusat dan r adalah jari-jari dari lingkaran. Dari persamaan yang didapat diatas, kita dapat menentukan apakah termasuk titik terletak pada lingkaran tersebut, atau di dalam lingkaran atau diluar lingkaran. Untuk menentukan le